Heterolytic Cleavage of Dihydrogen by an Iron(II) PNP Pincer Complex via Metal–Ligand Cooperation
نویسندگان
چکیده
The bis-carbonyl Fe(II) complex trans-[Fe(PNP-iPr)(CO)2Cl]+ reacts with Zn as reducing agent under a dihydrogen atmosphere to give the Fe(II) hydride complex cis-[Fe(PNP-iPr)(CO)2H]+ in 97% isolated yield. A crucial step in this reaction seems to be the reduction of the acidic NH protons of the PNP-iPr ligand to afford H2 and the coordinatively unsaturated intermediate [Fe(PNPH-iPr)(CO)2]+ bearing a dearomatized pyridine moiety. This species is able to bind and heterolytically cleave H2 to give cis-[Fe(PNP-iPr)(CO)2H]+. The mechanism of this reaction has been studied by DFT calculations. The proposed mechanism was supported by deuterium labeling experiments using D2 and the N-deuterated isotopologue of trans-[Fe(PNP-iPr)(CO)2Cl]+. While in the first case deuterium was partially incorporated into both N and Fe sites, in the latter case no reaction took place. In addition, the N-methylated complex trans-[Fe(PNPMe-iPr)(CO)2Cl]+ was prepared, showing no reactions with Zn and H2 under the same reaction conditions. An alternative synthesis of cis-[Fe(PNP-iPr)(CO)2H]+ was developed utilizing the Fe(0) complex [Fe(PNP-iPr)(CO)2]. This compound is obtained in high yield by treatment of either trans-[Fe(PNP-iPr)(CO)2Cl]+ or [Fe(PNP-iPr)Cl2] with an excess of NaHg or a stoichiometric amount of KC8 in the presence of carbon monoxide. Protonation of [Fe(PNP-iPr)(CO)2] with HBF4 gave the hydride complex cis-[Fe(PNP-iPr)(CO)2H]+. X-ray structures of both cis-[Fe(PNP-iPr)(CO)2H]+ and [Fe(PNP-iPr)(CO)2] are presented.
منابع مشابه
Efficient Hydrogenation of Ketones and Aldehydes Catalyzed by Well-Defined Iron(II) PNP Pincer Complexes: Evidence for an Insertion Mechanism
We have prepared and structurally characterized a new class of Fe(II) PNP pincer hydride complexes [Fe(PNP-iPr)(H)(CO)(L)] n (L = Br-, CH3CN, pyridine, PMe3, SCN-, CO, BH4-; n = 0, +1) based on the 2,6-diaminopyridine scaffold where the PiPr2 moieties of the PNP ligand are connected to the pyridine ring via NH and/or NMe spacers. Complexes [Fe(PNP-iPr)(H)(CO)(L)] n with labile ligands (L = Br-,...
متن کاملHomolytic H2 cleavage by a mercury-bridged Ni(I) pincer complex [{(PNP)Ni}2{μ-Hg}].
Reduction of the pincer nickel(ii) complex [(PNP)NiBr] with sodium amalgam (Na/Hg) forms the mercury-bridged dimer [{(PNP)Ni}2{μ-Hg}], which homolytically cleaves dihydrogen to form [(PNP)NiH]. Reversible CO2 insertion into the Ni-H bond is observed for [(PNP)NiH], forming the monodentate κ(1)O-formate complex [(PNP)NiOC(O)H].
متن کاملFlexible binding of PNP pincer ligands to monomeric iron complexes.
Transition metal complexes supported by pincer ligands have many important applications. Here, the syntheses of five-coordinate PNP pincer-supported Fe complexes of the type (PNP)FeCl2 (PNP = HN{CH2CH2(PR2)}2, R = iPr ((iPr)PNP), tBu ((tBu)PNP), or cyclohexyl ((Cy)PNP)) are reported. In the solid state, ((iPr)PNP)FeCl2 was characterized in two different geometries by X-ray crystallography. In o...
متن کاملHeterolytic activation of dihydrogen by platinum and palladium complexes.
Wide bite angle diphosphine ligands were used to prepare [(diphosphine)M(2-(diphenylphosphino)pyridine)](2+) complexes (M = Pd, Pt). Except for the ligand with the largest bite angle, 2-(diphenylphosphino)pyridine coordinates in a bidentate mode leading to bis-chelate complexes. In the case of Xantphos (9,9-dimethyl-4,5-bis(diphenylphosphino)-xanthene, βn = 111°) two types of complexes are form...
متن کاملLow-pressure hydrogenation of carbon dioxide catalyzed by an iron pincer complex exhibiting noble metal activity.
A highly active iron catalyst for the hydrogenation of carbon dioxide and bicarbonates works under remarkably low pressures and achieves activities similar to some of the best noble metal catalysts. A mechanism is proposed involving the direct attack of an iron trans-dihydride on carbon dioxide, followed by ligand exchange and dihydrogen coordination.
متن کامل